
ICON BASED ERROR CONCEALMENT FOR JPEG AND JPEG 2000 IMAGES

Michael Gormish

Ricoh Innovations, Inc., Menlo Park, California, gormish@rii.ricoh.com

Copyright 2003 IEEE. Published in the 2003 International Conference on Image Processing (ICIP 2003), scheduled for September 14-17, 2003 in Barcelona, Spain. Per-
sonal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE. Contact: Manager, Copy-
rights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966.
ABSTRACT

This paper describes methods to recover the useful data in
JPEG and JPEG 2000 compressed images and to estimate
data for those portions of the image where correct data can-
not be recovered. These techniques are designed to handle
the loss of hundreds of bytes in the file. No use is made of
restart markers or other optional error detection features of
JPEG and JPEG 2000, but an uncorrupted low resolution
version of the image, such as an icon, is assumed to be
available. These icons are typically present in Exif or JFIF
format JPEG files.

1. INTRODUCTION
1.1. Error detection and correction
Error prevention, detection, correction, and concealment
has been extensively studied and reported on in the litera-
ture. The closest work to that described here come from
video error concealment rather than from still systems. An
excellent bibliography for these methods appears in [3].

Because small errors can have devastating effects on
compressed files (in the worst case a single bit error could
render the entire image unreadable), image compression
standards have often included error detection and recovery
techniques. JPEG provides for restart markers which cause
the encoding and decoding process to be reset after some
amount of coded data. Distortion due to any errors is thus
limited to the region between restart markers. JPEG 2000
already encodes image portions independently to allow for
random access, but several options were included to
improve the ability to detect and recover from errors
including: "segmentation symbols," "termination on every
coding pass," and SOP and EPH markers.

However, error handling features of the compression
standards are often not used. Use of additional redundancy
to allow error detection or correction tends to increase the
bitrate, something compression people are loath to do. Fur-
ther, most transport protocols effectively provide an error
free channel by detecting errors and requesting retransmis-
sion. The error protection is thus wasted.

1.2. Errors due to USB transfer
Digital cameras are typically assumed to operate in an error

free environment and thus tend not to employ error correc-
tion features. Never the less, Figure 1 shows several images
taken with the author’s digital camera and transferred to a
computer while the camera had a low battery. The images
appeared to have been received correctly by the computer,
so the compact flash card was erased. However, many
applications refused to open these images, and even those
applications that would open them would display com-
pletely ruined images. Examination of the compressed file
revealed that several hundred bytes of data had been
replaced with 0 bytes. The images initially appeared to
have been transferred correctly only because the icon was
transferred correctly.

Amazingly, even though hundreds of bytes were lost,
Figure 1 reveals that a persistent Huffman encoder does
eventually resynchronize. It is obvious that there is useful
data available for the lower portion of the image, although
the position and color is wrong. The loss of position occurs
because the bytes with errors decoded to a different number
of 8x8 blocks than the correct bytes would have. The color
is incorrect in the lower portion of the images because
JPEG codes the DC coefficient of each 8x8 block as a dif-
ference value with the previous coefficient. Because of the
large number of lost differences the correct DC values (for
all color plans are unknown.

Figure 2 shows schematically an image with two large
errors in the codestream. The first region before any errors
have occurred in the codestream appears correctly. Then
the “Error Region” begins which may be a solid color band,

Figure 1 - JPEG images with errors

or an area with high amounts of visible noise. Eventually a
good decoder resynchronizes with the codestream and pro-
duces recognizable image data in Region 2. Although the
decoder resynchronized the beginning of blocks in the
codestream the position in the decoded image is wrong.
This leads to a large horizontal line where the second
region has been shifted from the first region. It also leads to
a vertical line artifact where the right edge of the picture is.
Because Region 2 is shifted the left and right edges of the
correct image are displayed next to each other in the visible
portion of the image. In addition to the artifacts caused by
the shifting of the image, the color of the image is typically
wrong in Region 2. Images with more than one large error
simply have an additional error region, and an additional
visible horizontal and vertical line and intensity shift. The
second error region in Figure 2 wraps around the edge of
the displayed image

1.3. Common JPEG file formats
Examination of the files produced by the author’s camera
(and indeed all Ricoh, Canon, and Olympus cameras exam-
ined), revealed that no restart markers had been included in
the produced codestreams. Thus the errors typically lead to
the lost of the rest of the image.

However, all of the cameras included an icon in the
beginning of the file. Indeed the two most common JPEG
file formats: JFIF and Exif [1] both allow for storage on an
icon, and other information such as color space. Further
more, the Design Rule for Camera File System (DCF), is a
standard that requires JPEG files to be in Exif format, and
requires a 160 by 120 icon[2]. Therefore this paper exam-
ines methods to detect, correct, and conceal very larger
errors occurring in JPEG and JPEG 2000 files.

2. JPEG ERROR CONCEALMENT
While in the author’s case the error region was easily iden-
tified by the string of zero bytes, it is not known how many
8x 8 blocks the error corresponds to in the image. In gen-
eral, the location of the error may not be trivial to find.
Thus this section provides algorithms for determining the
location of a large error (and the mostly correct region after
the error), determining the correct DC values to use in the

regions beyond the first region, and estimating values to
use in the error regions. This process is shown pictorially in
Figure 3 and explained in detail in the following sections.

2.1. Align compressed data correctly
Every 8x8 block in the error codestream begins with a DC
value which has been encoded by subtracting the previous
block’s DC value and then Huffman coding the difference.
This list of these "differential DC" values may have sub-
stantially more or substantially fewer DC values than the
number of 8x8 blocks in the image because the errors may
have lead to insertion or deletion of codeblocks.

The icon image can be scaled to the size of the full
image by standard interpolation methods e.g. pixel replica-
tion or bilinear interpolation. The scaled icon should be
compressed using the same quantization table as was used
to compress the error codestream. The compressed scaled
icon can be decoded in the same manner as the codestream
with errors yielding a list of differential DC (DDC) values
for the icon.

Let I(b) be the differential DC value of the bth block of
the scaled icon image. Let E(b) be the differential DC value
of the error image. Let A(s) be the average absolute error
between the signals when the error signal is shifted by s.
That is:

(1)

where the sum is over all samples which overlap after
shifting, and N is the number of sample which overlap. A
sample is the value of a "pixel" in a single color compo-
nent, e.g. the luminance value at a particular location in the
image.

A typical graph of M(s) has several clear local mini-
mums. The local minimums in M(s) indicate the amount of
shift caused by errors in the compressed data. Typically
there is a minimum at s=0 because the error is usually not
at the very beginning of the codestream, and thus some of
the codestream lines up correctly. There are also typically
repeated local minimums corresponding to the number of
8x8 blocks in the width of the image. This occurs because
the DC values are typically similar to the ones above and
below. If there is only one error region there should be only
two primary local minimums one at s=0 and one at the shift
which aligns the rest of the image. Each additional error
region will lead to a new local minimum.

Compute the how well the different shifts of the full
image match at each location of the icon image:

M1(b) = (I(b) - E(b-s1))2

M2(b) = (I(b) - E(b-s2))2

M1 and M2 indicate how well different shifts of the
image match the scaled icon. Since s1 is assumed to be the
shift for the first portion of the image and s2 for the second

Region 1

Region 2

Error
Region 1

Region 3

Error
Region 2

Figure 2 - Regions in an image with multiple errors

M s() 1
N
---- I b() E b s–()–∑=

portion, we determine the cumulative error caused by using
the error image with shift s1 up to position t, and then the
error image with shift s2 beyond position t.

(2)

The value of t which minimizes C(t) is taken as an esti-
mate of the location of the error region and the 8x8 block to
change from using one shift to another. This estimate is
sufficient for computing the correct DC offset to use after
the error.

2.2. Adjust DC value of full image to match the icon’s
DC value

Each region of the corrected image receives pixel data from
a different place. The first region can be decoded normally,
until the first error. The region after the error is filled in by
decoding and shifting the blocks spatially by the amount
determine previously. The absolute DC values for all the
color components (typically Y, Cb, and Cr) must be deter-
mined. This can be done by determining the overall aver-
age DC value for blocks in the region in both the error
image and the icon image.

The average Luminance DC value in the error image
assuming the previous absolute DC value was 0 is:

(3)

identical equations apply for Cb and Cr components by

summing those differential DC values.
The average Luminance DC value in the icon image is

(4)

this value is not a differential value. Thus the corrected
image should obtain the same average DC value in this
region. To do this, the corrected image should simply use
Ay - Oy as the previous DC values, and apply the differ-
ences decoded from the shifted codestream as usual.

2.3. Fill in blocks declared as errors from the scaled icon
There are many methods to fill in the blocks declared to be
in error. Some are discussed in [3]. In the case where the
icon is available, the simplest method is to copy the error
region from the scaled version of the icon. This will yield
an accurate replacement for the DC values, but the filled in
region will not contain any high frequency content. Thus
other techniques for filling in the error region can be used
in combination with copying. Techniques which determine
the value to fill in the frequency domain can easily be com-
bined by using only the non DC values in the 8x8 blocks.

3. JPEG 2000 ERROR CONCEALMENT
Although there are not currently shipping digital cameras
with JPEG 2000 we can anticipate their creation and exam-
ine correcting the same type of error. JPEG 2000 has very
different properties than the DCT based original JPEG. In
theory, icons are unneeded because a 1600x1200 image
with 5 levels of wavelet transform has an 50x38 LL sub-

C t() M1 i() M2 i()
i t=

end

∑+

i 0=

t

∑=

Figure 3 - Image in various stages of correction: aligned
(top left), DC corrected (bottom left), error region filled in
(top right)

Figure 5 - JPEG 2000 image: with LL
subband set to midpoint (top), with LL
replaced from icon (bottom)

Oy
1

t2 t1–
---------------- E b s2–()

b t1=

t2

∑=

Ay
1

t2 t1–
---------------- DC b s2–()

b t1=

t2

∑=

band, which could be used as an icon. Additional levels of
wavelet coefficients could be decoded to provide 100x75
or 200x150 images. However, when legacy systems are
updated to use JPEG 2000 they may still use Exif and DCF
and thus provide a separately coded icon. Further, some
systems may depend on an icon that is exactly 160x120 not
100x75 or 200x150. Operating systems or image browsing
programs may create their own independently coded icons.
Thus the situation with an uncorrupted icon, but a corrupt
image may still occur. We find that using an independently
coded icon provides an extremely simple way to conceal
errors in the JPEG 2000 file.

3.1. Determine Error Location
For any given system e.g. a camera with a 1600x1200
image and a 160x120 icon and medium high compression,
it should be possible to determine typical similarities
between the wavelet coefficients from the original image
and those from the icon. For the low frequency subbands
this match should be very close, and for high frequency
subbands (where the icon has no data) there is no match at
all.

As shown in Figure 4, wavelet subbands from the pre-
sumed valid icon can be compared with corresponding sub-
bands from the image. If the wavelet coefficients from a
scaled icon differ significantly for any code block, an error
can be declared for that code block. Further if there is an
error in a packet header and synchronization is lost the
whole subband (or precinct) can be declared in error.

In practice it is not necessary to expand the icon to the
full size of the original image and compress. A smaller
expansion could be done and only the lower frequencies of
the wavelet transform compared. This would save compu-
tation time and memory.

3.2. Replace coded data with data from icon
In the event of an error, data can be replaced on a code
block by codeblock basis with data from the scaled icon. If
this is done on a compressed codestream, packet headers
will have to be rewritten. For the case of loss of an entire
packet, the packet from the low resolution image can be
used. This process is shown in Figure 4.

3.3. Example
The upper image in Figure 5 was created by compressing
an image with JPEG 2000, causing an error in the LL sub-
band and replacing that subband by 0 (if the subband was
left with the error the image was much worse). In this case
there were enough levels of wavelet transform that the LL
subband fit in a single codeblock, thus the errors effect the
entire image. If there were fewer levels of wavelet trans-
form, or a higher level subband contained the error, the
effect would be more localized.

If the complete LL subband is replaced with the LL
subband created by scaling an icon to full size and com-

pressing it in the same way as the original image was com-
pressed the lower image in Figure 5 results. This image
even printed at full size, looks every bit as good as an orig-
inal. (In terms of MSE the error is relatively high, but this
is a perfect example of a case where MSE is a very poor
measure of the human response to image quality).

4. CONCLUSION
For the images ruined by the low power USB transfer, the
techniques in the paper mean the difference between usable
images and lost memories. No PSNR values are possible
since the original image was lost. Furthermore, PSNR turns
out to be relatively useless in simulations of similar errors.
This is because small errors in the DC value are unnotice-
able visually, but increase PSNR greatly. While the meth-
ods presented here are particularly useful for binary
symmetric error channels, they may be useful for burst
errors as long as there are only a few bursts within an
image.

5. REFERENCES
1. Japan Electronic Industry Development Association (JEI-
DA), Digital Still Camera Image File Format Standard (Ex-
changeable image file format for Digital Still Cameras: Exif),
Version 2.1, June 12, 1998, available (in English) at ht-
tp://www.pima.net/standards/it10/PIMA15740/exif.htm

2. Japan Electronic Industry Development Association (JEI-
DA), Design Rule for Camera File System (DCF), adopted De-
cember 1998, available (in English) at
http://www.pima.net/standards/it10/PIMA15740/dcf.htm

3. Yao Wang and Qin-Fan Zhu, “Error Control and Conceal-
ment for Video Communications: A Review,” Proceedings of the
IEEE, May 1998 Vol. 86, No. 5, pp. 974-997.

4. O. R. Mitchell and A. J. Tabatabai, “Channel error recovery
for transform image coding,” IEEE Trans. Commun., vol.
COM-29, pp. 1754,1762, Dec. 1981.

Codestream

Image Icon

Scaled
Icon

Corrected
Image

Compare

Wavelet Coefficients

Use Icon Data

Figure 4 - JPEG 2000 Error Concealment

	ABSTRACT
	1. INTRODUCTION
	1.1. Error detection and correction
	1.2. Errors due to USB transfer
	Figure 1 - JPEG images with errors
	Figure 2 - Regions in an image with multiple errors

	1.3. Common JPEG file formats

	2. JPEG Error concealment
	2.1. Align compressed data correctly
	Figure 3 - Image in various stages of correction: aligned (top left), DC corrected (bottom left),...

	2.2. Adjust DC value of full image to match the icon’s DC value
	2.3. Fill in blocks declared as errors from the scaled icon

	3. JPEG 2000 Error concealment
	3.1. Determine Error Location
	3.2. Replace coded data with data from icon
	Figure 4 - JPEG 2000 Error Concealment

	3.3. Example

	4. Conclusion
	5. REFERENCES

